## A New β-Carboline Alkaloid and a New Derivate of Isoferulic Acid from *Anemone altaica*

## Zhong Jie ZOU, Yue Sheng DONG, Jun Shan YANG\*

Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100094

**Abstract:** A new  $\beta$ -carboline alkaloid, 4-(9H- $\beta$ -carbolin-1-yl)-4-oxobutyric acid and a new derivate of isoferulic acid, (E)-3-(3-hydroxy-4-methoxyphenyl)acrylic acid carboxymethyl ester, were isolated from the roots of *Anemone altaica*. Their structures were determined on the basis of spectral data.

Keywords: Anemone altaica, β-carboline alkaloid, isoferulic acid derivate.

The roots of *Anemone altaica* are believed to have anti-inflammatory and analgesic properties and have been used for the treatment of epilepsia, neurasthenia and arthritis in chinese folk medicine for a long time<sup>1</sup>. In our chemical investigation of this plant, a new  $\beta$ -carboline alkaloid (1) and a new derivate of isoferulic acid (2) were isolated from its CHCl<sub>3</sub> extract. Here we report the structural elucidation of the two compounds.

Compound 1 was obtained as a yellow powder, m. p.  $234-236^{\circ}$ °C. The EIMS of 1 showed the molecular ion peak at m/z 268, and the molecular formula was determined to be C<sub>15</sub>H<sub>12</sub>N<sub>2</sub>O<sub>3</sub> from its HREIMS (calcd. 268.0848; found 268.0863). The UV spectrum

Figure 1 The key correlations in HMBC spectrum of compound 1 and 2



\* E-mail: junshanyang@hotmail.com

| No. | 1                     |              | 2                            |              |
|-----|-----------------------|--------------|------------------------------|--------------|
|     | $\delta_{\mathrm{H}}$ | $\delta_{C}$ | $\delta_{\mathrm{H}}$        | $\delta_{C}$ |
| 1   | -                     | 135.5        | -                            | 126.7        |
| 2   | -                     | -            | 7.12 (s)                     | 114.2        |
| 3   | 8.49 (d, J=4.5 Hz)    | 137.5        | -                            | 146.6        |
| 4   | 8.43 (d, J=4.5 Hz)    | 119.5        | -                            | 150.3        |
| 4a  | -                     | 133.8        |                              |              |
| 4b  | -                     | 119.8        |                              |              |
| 5   | 8.28 (d, J=8.0 Hz)    | 121.8        | 6.95 (d, J=8.0 Hz)           | 112.0        |
| 6   | 7.28 (t, J=8.0 Hz)    | 120.2        | 7.14 (d, <i>J</i> =8.0 Hz)   | 121.6        |
| 7   | 7.57 (t, J=8.0 Hz)    | 129.0        |                              |              |
| 8   | 7.76 (d, J=8.0 Hz)    | 113.0        |                              |              |
| 8a  | -                     | 141.7        |                              |              |
| 9a  | -                     | 131.0        |                              |              |
| 1'  | -                     | 174.0        | -                            | 165.9        |
| 2'  | 2.68 (d, J=6.5 Hz)    | 27.8         | 6.39 (d, <i>J</i> =15.5 Hz ) | 114.2        |
| 3'  | 3.56 (d,J=6.5 Hz)     | 32.6         | 7.56 (d, <i>J</i> =15.5 Hz)  | 145.8        |
| 4'  | -                     | 201.5        |                              |              |
| 1″  |                       |              | -                            | 169.3        |
| 2″  |                       |              | 4.64 (s)                     | 60.5         |

**Table 1** <sup>1</sup>H-NMR and <sup>13</sup>C-NMR data of **1** and **2** (DMSO- $d_6$ ,  $\delta$  ppm)

of 1 exhibited maxima at 220, 283, 310 and 380 nm, resembling β-carboline containing a carbonyl function at C-1 position<sup>2, 3</sup>. The IR spectrum showed absorptions at 1700 and 1664 cm<sup>-1</sup>, suggesting a carboxyl and a conjugated carbonyl group, respectively. The presence of the two groups was also indicated by the signals at  $\delta$  174.0 and 201.5 in <sup>13</sup>C-NMR spectrum. The signals in <sup>1</sup>H-NMR and <sup>13</sup>C-NMR spectra arising from β-carboline nucleus were almost same to those of 1-acetyl-β-carboline<sup>4</sup>. The <sup>1</sup>H-NMR spectrum indicated the signals of two sets of triplets at  $\delta$  2.68 (t, 2H, 6.5 Hz) and 3.56 (t, 2H, 6.5 Hz), due to protons H-2' and H-3' <sup>2,5</sup>. In the HMBC spectrum, the cross peaks H-2'/C-1', H-2'/C-4', H-3'/C-1' and H-3'/C-4' were observed, leading to the assumption of existing 4-oxobutyric acid group. This was supported by the rearrangement fragment ion peak at *m*/*z* 168 due to the 4-oxobutyric acid group in the EIMS. The full assignments of all the proton and carbon signals were made by means of <sup>1</sup>H-NMR, <sup>13</sup>C-NMR, HMQC, HMBC (**Figure 1**) and comparison with the data in the literatures<sup>2,4,5</sup>. On the basis of the above evidence, the structure of **1** was established as 4-(9H-β-carbolin- 1-yl)-4-oxobutyric acid.

Compound **2**, a yellow powder, m. p. 170-171°C, had the molecular formula of  $C_{12}H_{12}O_6$ , deduced from its HREIMS (calcd. 252.0633; found 252.0630). It showed IR absorptions at 3428 (hydroxyl), 2950 (broad band), 1725 cm<sup>-1</sup> (conjugated ester carbonyl group) and 1680 (carboxyl). Analysis of the <sup>1</sup>H-NMR spectrum of **2** suggested the presence of a 1,3,4-trisubstituted aromatic ring [ $\delta$  7.12 (s, 1H), 6.95 (d, 1H, 8.0 Hz), 7.14 (d, 1H, 8.0 Hz)], a *trans* double bond [ $\delta$  6.39 (d, 1H, 15.5 Hz), 7.56 (d, 1H, 15.5 Hz)], an isolated methylene [ $\delta$  4.64 (s, 2H)] and a methoxyl group [ $\delta$  3.80 (s, 3H)]. An isoferuloyl moiety could be deduced, when carefully comparing the <sup>1</sup>H-NMR and <sup>13</sup>C-NMR data of chemical shift of **2** to those of cimicifugic acid B<sup>6</sup>. Furthermore, the location of methoxyl and hydroxyl group was confirmed by the HMBC experiment

## 1486 A New β-Carboline Alkaloid and a New derivate of Isoferulic Acid

(Figure 1). In the HMBC spectrum, signal of the isolated methylene correlated with the carbonyl (C-1',  $\delta$  165.9) and the carboxyl group (C-1",  $\delta$  169.3). Based on the above evidence, the structure of **2** was established as (E)-3-(3-hydroxy-4-methoxy-phenyl)acrylic acid carboxymethyl ester.

## References

- 1. Z. Y. Wu, T. Y. Zhou, P. G. Xiao, et al., Compendium of New China (Xinhua) Herbal, Book I, 1988, p. 110.
- 2. K. Koike, T. Ohmoto, Chem. Pharm. Bull., 1986, 34(5), 2090.
- 3. B. S. Joshi, V. N. Kamat, D. H. Gawad, Heterocycles, 1977, 7(1), 193.
- 4. R. L. Dillman, J. H. Cardellina, J. Nat. Prod., 1991, 54(4), 1056.
- 5. L. B. S. Kardono, C. K. Angerhofer, S. Tsauri, et al., J. Nat. Prod., 1991, 54(5), 1360.
- 6. M. Takahira, A. Kusano, M. Shibano, et al., Chem. Pharm. Bull., 1998, 46(2), 362.

Received 4 March, 2005